If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8u^2+32u+24=0
a = 8; b = 32; c = +24;
Δ = b2-4ac
Δ = 322-4·8·24
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-16}{2*8}=\frac{-48}{16} =-3 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+16}{2*8}=\frac{-16}{16} =-1 $
| Y=1.4+2,y | | 6x+7=6x+10 | | 7+78/f=9 | | 10+5x=66 | | 5*4.12310562562=x | | 10 + 5 x= 66 | | 3k^2-14k+13=0 | | n2+ 6.44= 9 | | -x-12=19 | | 4y+2-3=8 | | 12=5+9/w | | 127=6+11z | | 6(2x+4)-(3x-7)=48 | | Y=-0.013+0.018x | | 11+5x=-7-2x | | 5x+15=4x+30 | | k-3-4=10 | | 4+45/x=9 | | 2(2u-3)+5u=4(u-5)-2u | | 9w-3=78 | | 7.1x-8=22 | | (7+z)(4z+2)=0 | | 6x+16=8x-8 | | 93=j/3+1 | | 1/3(x-10)=5 | | 14=6+96/w | | 9(x-2)=3(x+7)-3 | | -2x+9=7x-18 | | 3-(x=4)=11 | | 3y-6+2y=7(y-1) | | 19d−18d=17 | | 33=w/2-9 |